
Towards Synthesizing Qualitative and Diverse

Programs for Block-Based Visual Programming
by

Akshay Dodwadmath

Master Thesis

Department of Computer Science

Saarland University

supervised by

Dr. Adish Singla

Reviewers

Dr. Adish Singla

Dr. Goran Radanović

July 28, 2023

http://www.cs.uni-saarland.de/
http://www.uni-saarland.de/

3

Declaration of Authorship

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig verfasst

und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used any

other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die

Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the public

by having them added to the library of the Computer Science Department.

Datum/Date:

Unterschrift/Signature:

5

SAARLAND UNIVERSITY

Department of Computer Science

Abstract

Towards Synthesizing Qualitative and Diverse Programs for Block-Based

Visual Programming

by Akshay Dodwadmath

Block-based visual programming environments are increasingly being used to teach K-12

students basic programming concepts, as well as to help them develop computational

thinking. However, these environments often have a limited number of practice tasks,

which hinders student learning. To solve this pedagogical challenge, we formalize the

problem of synthesizing good quality codes, that can be used to produce new practice

tasks. In particular, given an input code specification containing details such as code

sketch and desired code length (Sin,Lin), we propose a methodology based on neural

techniques, to synthesize a diverse set of good quality codes {Cout}. Our methodology is

motivated by the fact that, it is challenging to handcraft all the rules that can encapsulate

the features of good quality codes; hence using a rule-based approach is futile. Instead,

our neural code generation algorithm operates by first performing behavior cloning on

a set of expert generated codes. Then, the algorithm uses reinforcement learning with

quality based rewards, to improve the quality of the generated codes. We demonstrate

the effectiveness of our algorithm through an extensive empirical evaluation on a set

of Karel specifications, which are based on Intro to Programming with Karel course by

CodeHS.com.

http://www.uni-saarland.de/
http://www.cs.uni-saarland.de/

7

Acknowledgements

First and foremost, I would like to thank Dr. Adish Singla, for giving me the opportunity

to work under his supervision. His immense knowledge and expertise helped me to gain

new perspectives, and improve my technical skills. I would like to express my sincere

gratitude to my mentor Georgios Tzannetos, for his assistance and support at every

stage of the project.

I am deeply grateful to all of my friends, who have been a constant source of happiness

and fun during my stay at Saarbrücken. I am also thankful to my brother, who has

constantly motivated and encouraged me throughout my studies. Finally, I would like

to thank my wonderful parents, without whose unconditional and endless support, I

would not have written this thesis.

Contents

Declaration of Authorship 3

Abstract 5

Acknowledgements 7

1 Introduction 13

1.1 Motivation . 13

1.2 Contribution . 15

1.3 Outline of the Thesis . 16

2 Background 19

2.1 Block-Based Visual Programming . 19

2.2 Program Synthesis . 21

2.3 RL Framework for Program Synthesis . 23

2.4 Adding Diversity to Program Synthesis 24

3 Related Work 27

3.1 AI for Programming Education . 27

3.2 Program Synthesis . 27

3.3 Diverse Output Generation . 28

4 Problem Setup 31

4.1 Preliminaries . 31

4.2 Formalizing the Objective . 33

5 Neural Code Generation Network - (CodeGen)Net 35

5.1 Behavior Cloning . 36

5.2 Multi-Target RL Framework . 37

5.3 Integration with Beam Search . 38

6 Experiments 39

6.1 Task Generation and Code Quality Scoring 39

6.2 Evaluation Setup . 40

6.3 Results . 42

9

10

7 Conclusions 47

7.1 Discussion . 47

7.2 Limitations & Future Work . 47

7.3 Broader Impact . 48

List of Figures 49

List of Tables 52

Bibliography 53

Extra Background & Results 61

A.1 Recap of REINFORCE Algorithm [60] . 61

A.2 Analysis of the Baselines . 62

A.3 More Qualitative Results . 65

I dedicate this thesis to my family, for their constant support and
unconditional love. I love you all dearly!

Chapter 1

Introduction

1.1 Motivation

With the advent of online education, teachers are able to provide high quality edu-

cation to students across the world. One of the popular forms of online education

that has emerged recently is block-based visual programming, through environments

like Scratch[47], initiatives like Hour of Code by Code.org [3], and online courses like

Stanford CS introductory programming [1][5] and Intro to Programming with Karel by

CodeHS.com[2]. These have a combination of simple syntax structure along with the

ability to convey common programming paradigms such as control flow or routines,

making them an ideal choice for new students learning to code [65][66].

Due to these factors, there has been increasing interest to improve the teaching mech-

anisms for the block-based programming environment using AI systems [45][46][64][66].

This can be seen through the many recent works in the field, such as using AI for hint-

generation[43][71][39][18], automated feedback generation systems [53][44][68] or provid-

ing worked examples [72]. In spite of all these, the domain suffers from a limited number

of programming tasks which are usually hand curated by experts, limiting the number

of practice problems available to learn from. For example, HOC’s Classic Maze chal-

lenge [4] provides only 20 puzzles, which can be insufficient for the students to fully

comprehend the desired concepts.

To tackle this pedagogical challenge, one solution is to automatically generate diverse,

good quality codes, and use the codes to create new practice tasks. Recently, Ahmed

et al. [8] attempted such a solution by using a constraint based code generation frame-

work followed by symbolic execution[27]. However, to generate codes, they made use

of a set of hand-crafted constraints using expert knowledge, which limits the scalabil-

ity of the approach. We hypothesize that, recent advancements in AI especially deep

learning[31][61][29][38], can be utilized to learn the constraints automatically and be

used to generate only those codes which are of good quality. Symbolic execution or any

other code-to-task module can then be used to produce new tasks for student learning.

13

Chapter 1. Introduction 14

Sin

def Run(){
While(cond){
}

}
Lin:=7

Code
specification

def Run(){
move
While(markerPresent){
pickMarker
turnLeft
turnRight
turnLeft
turnRight
}

}

(a)

def Run(){
While(frontIsClear){
move
move
putMarker
turnLeft
turnLeft
turnLeft
}

}

(b)

def Run(){
move
While(no markerPresent){
pickMarker
move
turnLeft
move
turnRight
}

}

(c)

def Run(){
While(not frontIsClear){
move
move
move
move
putMarker
turnRight
}

}

(d)

def Run(){
move
While(markerPresent){
pickMarker
move
turnLeft
move
turnRight
}

}

(e)

def Run(){
While(frontIsClear){
move
move
move
move
putMarker
turnRight
}

}

(f)

Six different codes (a) to (f) which satisfy the specification

Figure 1.1: Here we show a input code specification consisting of a code sketch and
desired code length (Sin,Lin) on the left, and sample codes satisfying it from (a) to
(f) on the right. The codes (a) to (d) are of bad quality, since they are semantically
incorrect: (a) has consecutive action blocks which do not contribute to the output:
turnLeft actions followed by turnRight, (b) has suboptimal action block sequence: three
consecutive turnLeft which can be performed by a single turnRight, (c) and (d) always
cause crash in execution if loops are entered: (c) has a condition to check for no markers
followed by a pickMarker action, while (d) has a condition to check whether front is
not clear followed by a move action. The codes (e) and (f) are semantically correct and

are also good quality codes.

We formalize the problem of synthesizing codes for block-based visual programming as:

given an input code specification containing details such as code sketch and desired

code length (Sin,Lin), the goal is to synthesize a set {Cout} of good quality codes which

satisfy the specification. Good quality codes should be semantically correct and should

also lead to new practice tasks useful for student learning. For example in Figure 1.1,

codes (a) to (d) suffer from semantic irregularities and are considered as bad quality

codes; while codes (e) and (f) are semantically correct and also lead to useful tasks (i)

and (ii) respectively, shown in Figure 1.2. Thereby, codes (e) and (f) are considered as

good quality codes. Finally, we provide another set of examples in Figure 1.3.

There are three key challenges that arise for the problem. First, the space of possi-

ble programs is large even for simple specifications, and intractable for more complex

Chapter 1. Introduction 15

(i) (ii)

Figure 1.2: Good quality codes should also lead to new practice tasks useful for
student learning. Here, task (i) is produced using code (e) and task (ii) is produced
using code (f) from Figure 1.1. Both tasks can be useful for student learning and hence,

code (e) and code (f) are considered as good quality codes.

specifications. For example, for the specification shown in Figure 1.1, the number of syn-

tactically correct codes that can be generated is over 100,000; thereby using exhaustive

enumeration based techniques [54][7][9] is intractable. Second, out of all the syntacti-

cally correct codes, only a small number of them are of good quality. Thereby random

generation of programs is not a viable solution(we try this as a baseline and show the

results in Section 6.3). Third, the notion of good quality codes is an abstract concept,

and it is improbable to define all the rules required to encapsulate the features of good

quality codes; hence the constraint based approach of Ahmed et al. [8] or using any

rule based approaches [11][35] is infeasible(we also try a constraint based approach in

Section 6.3).

Our objective is to overcome these challenges by developing a neural methodology, that

can learn the quality features by itself, and automatically generate diverse, good quality

codes.

1.2 Contribution

In this work, we aim to solve the problem of synthesizing qualitative and diverse codes

for block-based visual programming. To this end, we propose a neural code generation

framework (CodeGen)Net which uses behavior cloning to learn from a set of expert

demonstrations πE ∼ (Sin,Lin) → {Cout}E , and then uses multi-target reinforcement

learning to generate diverse codes with improved quality πθ ∼ (Sin,Lin) → {Cout}θ.
We demonstrate the effectiveness of our pipeline by performing an extensive empirical

evaluation on a set of specifications in the Karel domain.

Our main contributions are summarized as follows.

1. We formalize the problem of qualitative and diverse program synthesis for block-

based visual programming (Chapter 4).

Chapter 1. Introduction 16

2. We propose a neural code generation framework (CodeGen)Net which uses be-

havior cloning and multi-target reinforcement learning to generate diverse, good

quality codes (Chapter 5).

3. We demonstrate the effectiveness of our approach by empirical evaluation of pro-

grams synthesized for a set of Karel specifications based on Intro to Programming

with Karel course by CodeHS.com [2]. (Chapter 6).

1.3 Outline of the Thesis

We provide a brief overview of the background concepts required for the thesis in Chapter

2. Chapter 3 consists of an overview of the related works. We formalize the objective in

Chapter 4. Our main contributions, proposals and methods are provided in Chapter 5,

followed by empirical results in Chapter 6. Finally, we conclude with some discussions,

limitations and possible future directions in Chapter 7.

Chapter 1. Introduction 17

Sin

def Run(){
Repeat(count){
}

}
Lin:=6

Code
specification

def Run(){
Repeat(3){
move
move
move
}
putMarker
turnRight

}

(a) (A)

def Run(){
Repeat(6){
move
putMarker
pickMarker
}
turnLeft
move

}

(b) (B)

def Run(){
Repeat(4){
move
move
turnRight
move
turnLeft
}

}

(c) (C)

def Run(){
Repeat(6){
move
putMarker
}
turnLeft
move
pickMarker

}

(d) (D)

Figure 1.3: Here we show another example. Input code specification is shown at
the top, sample codes for it are shown on the left side and an example task produced
from each code are shown on the right side. The codes (a) and (b) are bad quality
codes, since they are semantically incorrect: (a) has a suboptimal repeat block: three
move action blocks can be replaced by a single move action block with an increase in
repeat count, (b) has a redundant sequence of action blocks which do not contribute
to the output: putMarker action followed by pickMarker. (a) and (b) also do not lead
to useful practice tasks as shown in (A) and (B) respectively. The codes (c) and (d)
are good quality codes, since they are semantically correct, and lead to useful practice

tasks as shown in (C) and (D) respectively.

Chapter 2

Background

In this section, we discuss the necessary background for our thesis. We begin with

block-based visual programming, and in particular Karel programming which is the

environment we work on for our thesis. We then discuss the general problem of program

synthesis as well as reinforcement learning framework for program synthesis, which act as

a base to build our pipeline. Finally, we discuss the idea of adding diversity to program

synthesis, which we is useful for our work.

2.1 Block-Based Visual Programming

Block-based visual programming [47][3][5] is a popular form of programming education

which allows students to learn basic programming skills as well as to develop compu-

tational thinking. This domain is used to provide a systematic introduction to pro-

gramming concepts by focusing on logical deduction and spatial reasoning rather than

calculation and algebraic reasoning. Students are introduced to programming through

a visual approach instead of text, where they can build a program by the use of a fixed

set of pre-defined tokens or ”blocks”.

The development of exercises in these environments are usually dependent on the kind of

programming concepts intended to be conveyed. For example, the 20 puzzles of HOC’s

Classic Maze challenge [4] each focus on different programming concepts. The initial

puzzles focus on concepts such as creating instructions and learning the syntax structure,

while the latter puzzles focus on understanding control flow and improving efficiency.

Another example is Karel based course of Stanford CS introductory programming [5][1],

where separate sections of exercises have been created depending on which concept the

student wants to learn; such as exercises for routines or controls. Thereby, having an

automated code generation system would be beneficial to develop new exercises based

on the required programming concept.

There are various types of programming languages used for block-based learning such as

Scratch [47], Hour of Code(HoC) [3] and Karel [41][6]. Karel has been used as a common

19

Chapter 2. Background 20

def Run(){
Repeat(8){
If(no markerPresent){
putMarker

}
Else{
pickMarker

}
move
}

}

Figure 2.1: An example Karel programming problem, One ball in each spot from the
Intro to Programming with Karel course by CodeHS.com [2].

code C := def Run() DO s
rule s := a | s;s | If(b) DO s | If(b) DO s Else s

| While(b) DO s | Repeat(x) DO s
action a := move | turnLeft | turnRight | pickMarker

| putMarker
cond b := markerPresent | leftIsClear |

| rightIsClear | frontIsClear | not(b)
count x := 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

Figure 2.2: The syntax of Karel DSL.

platform for different areas of AI research such as neural program induction [15] and

neural program synthesis [10][49]; we also make use of Karel language to develop our

framework.

Karel programming language

A program in Karel is used to control a robot/agent in a virtual environment, in order

to explore the environment and manipulate simple objects in it. The environment is a

rectangular m × n grid world, where random cells can contain markers or walls (but not

both); note that the agent cannot enter grid cells where there is a wall. A typical Karel

programming problem consists of a task in the form of input-output grid, and a solution

code that can maneuver the agent to change the environment from the input grid state

to the output grid state. An example Karel problem from CodeHS.com [2] is shown in

Figure 2.1.

For agent control and environment manipulation, five action blocks are available: move

(the agent moves by one grid cell in the direction it is facing), turnLeft (the agent turns

90◦ left), turnRight (the agent turns 90◦ right) putMarker (the agent puts a marker on

the grid cell he is standing at), pickMarker (the agent lifts a marker off the grid cell he

is standing at). The agent can also query information about the current environment

state: asking whether there is a marker in its present location(markerPresent), and

whether there are walls next to it (frontIsClear, leftIsClear, rightIsClear). This can

be done by means of conditional statement blocks. The following conditional blocks

are available: branching statements (if, if-else) and loops (while, repeat). The complete

Domain Specific Language(DSL) of Karel programming language is shown in Figure 2.2.

We use the Karel environment for all our proposals, methodology and experiments. This

can be observed throughout the thesis.

Chapter 2. Background 21

(c)

def Run(){
Repeat(8){
If(no markerPresent){
putMarker

}
Else{
pickMarker

}
move
}

}

(C)

(div(i,j), rem(i,j)) ← find (y, z)

such that

i = y.j + z and 0 ≤ z and z < j

where 0 ≤ i and 0 < j

(a)

div(i,j) ← if i < j

then 0

else

div(i-j, j) + 1

rem(i,j) ← if i < j

then i

else

rem(i-j, j)

(A)

FOOD → DOOF

SAMPLE → ELPMAS

SOIL → LIOS

(b)

StrReverse(string)

(B)

Figure 2.3: Different types of specifications that have been used in program synthesis
along with their corresponding programs. (a) uses formal specification, (b) uses text
based input-output examples, while (c) uses a visual input-output example. Corre-

sponding programs are shown in (A), (B) and (C) respectively.

2.2 Program Synthesis

Program synthesis is the process of synthesizing a program that satisfies a given specifi-

cation. The application of program synthesis can range from virtual environments such

as pedagogy for student learning, to real world applications such as robot manipulation

and control. Due to its wide applicability, the area of automated program synthesis has

been researched since a long time [63][21][37][36]. However, only recently it has seen a

number of works that make use of deep learning techniques [10][49][12], which is encour-

aging because using the latest AI advancements to synthesize codes automatically can

lead to vast improvements in the field.

The conventional program synthesis problem consists of an input specification and out-

put program/programs; we define both of them here.

Input specification. The input specification should express the purpose of the desired

program directly. It should provide a precise idea of what the program is intended to

do. The type of input specification can vary depending on the problem definition and

Chapter 2. Background 22

application. This can range from formal specifications [63][36] to input-output examples

of text [40] or visual [10] data, as shown on the left side of Figure 2.3.

Output programs. Any program that satisfies the requirements of the input specifica-

tion is a valid output program for the specification. The format of the output programs

also vary based on the application/area of interest, ranging from conventional algorithm

structure to syntax of a pre-defined DSL such as string transformation based DSL or

Karel DSL, as can be seen in the examples on the right side of Figure 2.3.

In our case, we define specifications in terms of code sketch and code length, which

encapsulates the required output codes’ structure, contents and length information. We

use the Karel DSL to generate the output programs.

Next, we formulate the problem of program synthesis.

Program synthesis formulation

The objective of program synthesis is to learn a code synthesizer σ that produces a

program Cn for a given input specification ψn,

σ : ψn → Cn (2.1)

Usually a pre-defined criteria is used to evaluate the performance of the synthesizer.

The synthesizer σ could be any model: random generator, rule-based algorithm, neural

network, etc.

Neural program synthesis

If σ is a neural network, the formulation is called as neural program synthesis. In

neural program synthesis, a language model such as LSTM [10][49] or Transformer [19]

is commonly used as the synthesizer σ.

Let each code be represented by C = [c1, ..., cL]. The language model predicts a single

token at a time. At each time-step, the input to the model is the concatenation of

the embedding of the input specification as well as the last predicted token. Then

the predicted tokens c1, ..., cL across all time-steps are concatenated to generate a full

program C.

This process can be represented as,

pθ (Cn | ψn) =

Ln∏
t=1

pθ (ct | c1, ..., ct−1, ψn) (2.2)

where θ are the parameters of the neural model.

Chapter 2. Background 23

Using MLE for neural program synthesis

The most common method to learn the parameters θ of the neural model, is to use

maximum likelihood estimation (MLE) on a set of training data. Assuming we have a

training data consisting of N input specifications (ψ1, ..., ψN)T and corresponding target

programs (C1, ...,CN)T , the objective can be stated as,

θ⋆ = argmax
θ

LMLE(θ), where LMLE(θ) =

N∏
n=1

pθ (Cn | ψn) (2.3)

Adding syntax conditioning to the MLE objective. In order to make learning

easier, it is useful to incorporate syntax conditioning which can reduce the space of

programs to explore, as well as increase the ability of the model to synthesize syntacti-

cally correct programs. This can be done by making use of predefined grammar rules

or learning the grammar jointly along with synthesizing programs[10]. The model will

then be able to discard any syntactically incorrect program before making a prediction.

We use the MLE objective for neural program synthesis(with syntax conditioning) for

the first stage of our framework. The description of this can be found in Section 5.1.

2.3 RL Framework for Program Synthesis

Reward based objective

A framework for using reinforcement learning for program synthesis was introduced by

Bunel et al.[10], by adding a reward function to the MLE based objective.

θ⋆ = argmax
θ

LRL(θ), where LRL(θ) =

N∑
n=1

(∑
C

pθ (C | ψn) rew (C)

)
(2.4)

Here, the reward function can be used in general to encode any notion of quality of the

programs such as program correctness, run-time efficiency etc. For example, Bunel et al

[10] used the function to measure the generalization accuracy of the synthesizer model.

In our case, we use the reward function to measure the quality of the generated codes.

Using REINFORCE algorithm

The objective of equation 2.4 is intractable to compute, as the inner sum is over all

possible programs. Instead, the gradient of this update can be approximated by using

Monte Carlo samples, such that the expectation of the sample gradient is proportional

to the actual gradient of the objective as a function of the parameter θ. This is called

the REINFORCE trick [67], and can be expressed as,

Chapter 2. Background 24

LRL(θ) ≈
N∑

n=1

R∑
r=1

1

R
rew (Cr) , where Cr ∼ pθ (· | ψn)

∇θLRL(θ) ≈
N∑

n=1

R∑
r=1

1

R
rew (Cr)∇θ log (pθ (Cr | ψn))

(2.5)

where R is the total number of rollout samples for each specification. We do a recap of

the REINFORCE algorithm in Appendix A.1.

We use the RL framework for program synthesis for the second stage of our framework

after MLE optimization. The description of this can be found in Section 5.2.

2.4 Adding Diversity to Program Synthesis

The standard MLE optimization objective of equation 2.3 is used to maximize the like-

lihood of a set of single reference target values for a corresponding set of input values.

However, this objective makes it difficult to learn a model that can synthesize multiple,

diverse programs for the same specification.

There have been some works that attempt to generate multiple outputs during inference

even though the training is performed through a single reference corpus, such as methods

based on sampling from a mixture of models [48][69] or decoding with diversity regular-

ization [32][62]. However, these methods suffer from a discrepancy between training and

inference. Recently, Lauchaux et al. [30] proposed a MLE based training method that

makes learning a one-to-many mapping using a multi-reference corpus possible. In our

work, we use a multi-reference corpus and use a similar objective as in [30], in order to

synthesize diverse programs. Here we briefly define the modified objective.

Multi-code MLE optimization

The standard MLE objective of equation 2.3 is used to maximize the probability of a

target code Ci for a input specification ψi. In a multi-target reference corpus of codes,

for the same input specification there could be multiple target codes. To learn a one-to-

many mapping, we introduce a set of intermediate key values, to which different target

codes are mapped, and the language model has to predict the output looking at the

specification as well as a key value.

The MLE optimization can then be re-framed as,

LMLE(θ) =

N∏
n=1

pθ (Cn | ψn, valk) , where valk ∼ key(Cn) (2.6)

Chapter 2. Background 25

where the only difference from equation 2.3 is the use of additional key values valk, with K

being the total number of possible key values. The mapping of key-values is performed

by learning a neural encoder like Transformer [19] model. The intuition behind this

method is that, the framework can learn different code representations corresponding to

each key value, and generate different types of codes using these key values once training

is complete.

Diverse code generation

Once the model is trained using equation 2.6, it can be utilized to generate diverse codes

for a specification, using different key values. For this purpose, no target codes are used

and only the different key values are presented along with the input specification, and

the model must generate a code for each key value.

This can be represented as,

σ : ψn, {val1, .., valk, .., valK} → {C1, ..,Ck, ..,CK}n (2.7)

We use the multi-code MLE optimization of equation 2.6 for the first stage of our neural

framework, and the multi-code generation of equation 2.7 for the second and third stages

of our neural framework. The description of this can be found in Section 5.1, 5.2 and

5.3.

Chapter 3

Related Work

3.1 AI for Programming Education

Using AI for the improvement in programming education has been increasingly re-

searched as seen in the large amount of recent works. AI has been explored for im-

proving student learning through applications such as hint generation [43][71][39][18],

student knowledge understanding [64][25] and providing worked examples [72]. It has

also been used to improve the learning platforms through automated feedback gener-

ation [53][44][68] and content generation [8][20]. A range of AI techniques have been

used depending on the available resources, such as learning code embeddings from his-

torical data [39][42], reinforcement learning in zero-shot setting [18][55], or using expert

grammars to generate synthetic training data [68].

In particular, the amount of works focused on block-based visual programming has seen

a surge in interest[45][46][64][66], confirming the popularity of this form of education.

Closely related to our work, Ahmed et al. [8] introduced a framework to synthesize

conceptually similar tasks for block-based visual programming, with a similar goal of

developing an automated system to produce new practice tasks for students. However,

they use a constraint based approach to generate codes which limits the scalability,

whereas we use a neural approach.

3.2 Program Synthesis

The field of program synthesis has been researched since a long time. The initial works

on program synthesis focused on constructing programs based on formal specifications

of the input-output relation. Many of the works relied on theorem proving techniques

[63][21][37][36], where the general idea was to prove a theorem that satisfied the set of

input-output relations and then extract a program directly from the proof. Another set

of works utilized rules to transform a specification into the desired programs [11][35].

27

Chapter 3. Related Work 28

However, the specifications in these needed to be in the form of predicate calculus, and

providing such a specification was as complicated as writing the program itself.

This led to programming by examples(PBE) and programming by demonstration(PBD)

methods [14][33], in which the specifications had to be provided in the form of input

output examples or a set of demonstrations portraying required program behaviour.

This simplified the problem of program synthesis since it was much easier to reason

about concrete input states, as well as it avoided the need of providing formal spec-

ifications. Initially rule based approaches were able to deliver real-time applications

through programming by examples such as FlashFill system in excel by Gulwani et al.

[22]. However, it was difficult to extend such systems to more complex applications, and

these also needed experts to define pruning rules for efficient search. Thereby, the focus

shifted towards exploring deep learning techniques for program synthesis [51][12][13].

Neural Program Synthesis

Earlier neural approaches such as RobustFill [16] or Neuro-Symbolic Program Synthesis

[40] continued the work on synthesizing programs for string input-output examples.

More recently, Bunel et al. [10] focused on synthesizing programs for Karel domain by

leveraging the syntax constraints of the Karel program language and a reinforcement

learning framework. Shin et al. [49] made use of Karel interpreter to obtain intermediate

execution traces and split the problem of specification based synthesis. Chen et al. [12]

improved upon these by also making use of the semantic information, by obtaining

intermediate grid states through program execution. There has also been some interest

to focus on more challenging languages like C programming [13], but this has been limited

so far. Deep learning for synthesis based on demonstrations has also been explored. For

example, Sun et al. [58] and Duan et al. [17] have explored synthesizing programs using

video frames as demonstrations, with the intention that the programs should summarise

information and predict the underlying logic in the video frames.

Another interesting line of work is combining the neural synthesis process with program

debugging [24][50]. The main advantage of this is it has more resemblance to human

coders. Finally, some other works have focused on creating synthetic datasets [51][57]

or query based datasets [26] for model training, which led to improvement in the gener-

alization capabilities. Our work can also be utilized for developing synthetic examples

in the block-based environment, with the advantage that the examples would be more

suitable for the real world scenario.

3.3 Diverse Output Generation

There have been different approaches proposed to generate a diverse set of outputs for

a given input, in machine learning. These include adding random noise to the latent

Chapter 3. Related Work 29

space of a VAE [28], sampling from a mixture of models [48][69], applying diversity

regularization to decoding algorithm [32][62] and conditioning the decoding procedure

with diverse signals [52][30].

One recent work of the last category was by Lachaux et al. [30], who made use of a

neural framework that learnt a key value mapping of targets during training. These key

values were then used to generate diverse outputs during inference. Their procedure was

developed with respect to neural machine translation; we derive a similar procedure for

diverse code generation based on key values for our work(see section 2.4).

Another recent work for diverse neural machine translation was by Lin et al [34], who

made use of a multi-target reinforcement learning framework with rewards based on the

quality and diversity of the outputs. We use a similar approach in the RL stage of our

pipeline (see section 5.2). In their case, they defined rewards based on the language

translations, while we define rewards based on the quality of codes generated.

Chapter 4

Problem Setup

code C := def Run() DO s
rule s := a | s;s | If(b) DO s | If(b) DO s Else s

| While(b) DO s | Repeat(x) DO s
action a := move | turnLeft | turnRight | pickMarker

| putMarker
cond b := markerPresent | leftIsClear |

| rightIsClear | frontIsClear | not(b)
count x := 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

Figure 4.1: Karel Code DSL

sketch Q := def Run() DO S
rule S := ϕ | S;S | If(B) DO S | If(B) DO S Else S

| While(B) DO S | Repeat(X) DO S

Figure 4.2: Karel Sketch DSL

4.1 Preliminaries

Code space. We define the space of all possible codes as C and represent them using a

Domain Specific Language (DSL) [23]. For this work, we specifically employ the Karel

DSL shown in Figure 4.1 to represent the codes. A code C ∈ C has the following

attributes: Cblocks is the set of types of code blocks used in C, Csize is the number of

code blocks used, Cdepth is the depth of the Abstract Syntax Tree of C and the nesting

structure Cstruct represents programming concepts exercised by C. For example for the

code (b) in Figure 4.3, Cblocks ={move, turnLeft, pickMarker, turnRight, while}, Csize

= 7, Cdepth = 2, and Cstruct = {Run{while}}.

Sketch-Length space. We define a code sketch as a higher-level representation that

encapsulates the essential components of a code. We derive a sketch DSL from the Karel

DSL as shown in Figure 4.2 to define the sketch space S. Similar to the Abstract Syntax

Tree representation of a code, we represent a sketch as a tree having the programming

constructs as its nodes and represent its depth by Sdepth, and the nesting structure by

Sstruct. On the other hand, the length space L is the space of natural numbers. We

31

Chapter 4. Problem Setup 32

Sin

def Run(){
While(cond){
}

}
Lin:=7

(a)

def Run(){
move
While(markerPresent){
pickMarker
move
turnLeft
move
turnRight
}

}

(b) (c)

Figure 4.3: Reusing examples from Section 1 to define the preliminaries. Shown here
is a specification (a), code (b) and visual task (c).

define desired code length L as the pre-determined number of code blocks constraining

the size of codes. For example, for the specification (a) in Figure 4.3, Sdepth = 2, Sstruct

= {Run{while}} and L = 7.

The mapping from the sketch-length space to the code space is captured by the one-

to-many map, Φ : (S,L) → C, i.e., the representation of a code C in (S,L) is given by

Φ−1(C). Note that for a given (S,L) ∈ (S,L) there can be multiple C ∈ C. Further, a

code C is said to satisfy a specification (S,L), if Cdepth = Sdepth , Cstruct = Sstruct and

Csize = L.

Task space. We define the space of tasks as T. A task T ∈ T consists of a visual task

Tvis, a set of available types of code blocks (e.g., move, turnLeft) allowed in the solution

code, and a limit on the length of solution code in terms of the number of code blocks.

In this work, we restrict to the Karel tasks as used in Intro to Programming with Karel

by CodeHS.com [2]. An example visual task can be seen in Figure 4.3 (c).

We relate the code and task space using the following definition.

Definition (Suitable visual task). A visual task Tvis is suitable for a code C if the

following holds: the visual task Tvis can be successfully solved using C. We use {Tvis}C
to denote a set of different suitable visual tasks for C.

Chapter 4. Problem Setup 33

4.2 Formalizing the Objective

To formalize our objective, we use the domain knowledge about the block-based envi-

ronment to arrive at an empirical measure of the quality of a code.

Measuring code quality. A good quality code C should not suffer from semantic

irregularities such as redundant action sequence blocks, suboptimal action sequences

etc., and also should have a suitable visual task Tvis ∈ {Tvis}C that has some notion

of interestingness and complexity. We measure the code quality with a environment

specific function Fcodequal (C) ∈ [0, 1] . We provide the specific instantiation of Fcodequal

in the experiments chapter.

Objective. For any input specification consisting of a code sketch Sin and desired code

length Lin, our objective is to synthesize a set of output codes {Cout} satisfying the

specification, where Cout has a quality score above δ, i.e. Fcodequal

(
Cout

)
≥ δ, with δ

being a pre-defined threshold.

Chapter 5

Neural Code Generation

Network - (CodeGen)Net

Encoder

Encoder

Decoder
(Sin,Lin)

Sin

Lin

z
Sin

z
Lin

{Cout
1 , ..,Cout

k , ..,Cout
K }

Figure 5.1: Our algorithm (CodeGen)Net takes as input a code specification (Sin,Lin)
and generates a set of qualitative and diverse codes {Cout

1 , ..,Cout
k , ..,Cout

K }.

In this section, we present our technique (CodeGen)Net, which takes as input a code

specification containing sketch Sin and desired length Lin and generates a set of diverse

codes {Cout
1 , ..,Cout

k , ..,Cout
K }. The goal is for this set of codes to satisfy the objective of

Section 4.2. To achieve this goal, (CodeGen)Net operates in three stages: (i) In Stage-1,

we make use of a set of expert demonstrations consisting of specifications(sketch and

length) and good quality codes, and use behavior cloning to train a neural model. (ii)

In Stage-2, we design a reinforcement learning framework with quality based rewards to

fine-tune the neural model from Stage-1. (iii) In Stage-3, we integrate the model from

Stage-2 with beam search and release it for validation.

The core architecture remains the same across the three stages, and we describe it first.

(CodeGen)Net architecture. We use linear encoders to generate embeddings for the

input sketch z
Sin

and the input length z
Lin , which are passed on to the decoder. On the

decoder side, each output code is modelled one token at a time using an LSTM network.

At each time-step, the input embeddings and the last predicted token are concatenated

35

Chapter 5. Neural Code Generation Network - (CodeGen)Net 36

Expert
demonstrations

Sin

def Run(){
While(cond){
If(cond){
}
}

}
Lin:=5

def Run(){
While(no markerPresent){
move
If(rightIsClear){
turnRight

}
}
pickMarker

}

Figure 5.2: Stage 1 of our technique-behavior cloning uses a set of expert demonstra-
tions containing code specifications and good quality codes.

and passed as input to decoder. The predicted tokens are collected across the time-steps

and combined to generate a code Cout
k .

Now we describe the three stages of our algorithm.

5.1 Behavior Cloning

We use behavior cloning in Stage-1 to pre-train our neural pipeline. In this stage, we

make use of a set of expert demonstrations πE ∼ (Sin,Lin)→ {Cout}E , containing code

specifications and expert generated codes, and utilize the encoder-decoder network to

pre-train a neural policy πθ ∼ (Sin,Lin)→ {Cout}θ. We perform behavioral cloning(BC)

to directly estimate the expert policy πE , with maximum likelihood estimation (MLE).

Using the standard MLE objective for specification based synthesis defined in 2.3, the

training objective can be stated as,

θ⋆ = argmax
θ

LBC(θ), where LBC(θ) =

N∏
n=1

pθ
(
Cout
n | (Sin

n ,L
in
n)
)

(5.1)

where θ are the parameters of the model πθ, N is the total number of available specifica-

tions, (Sin
n ,L

in
n) are code sketch and code length of a specification, and Cout

n is a expert

generated code. Note that we also add syntax conditioning as part of the objective as

described in Section 2.2.

Multi-code optimization: Due to the one-to-many relation of the sketch space to the

code-space, a single specification could have multiple codes in the expert demonstrations.

However, the standard MLE objective of equation 5.1 is not suitable for a multi reference

training corpus. Moreover, using a single reference demonstration set is not a viable

option, as this limits the diversity in the output codes that can be generated during

inference. To deal with this issue, we use the modified MLE objective defined in Section

2.4 that enables multi-code MLE optimization and diverse code generation. Please refer

to 2.4 for more details about the modified MLE objective.

Chapter 5. Neural Code Generation Network - (CodeGen)Net 37

(CodeGen)Net
Reward
Function

Cumulative
reward

(Sin,Lin)
{Cout

1 , ..,Cout
k , ..,Cout

K }

Figure 5.3: Stage 2 of our technique-fine tuning the neural model from stage 1 with
a multi-target reinforcement learning framework.

5.2 Multi-Target RL Framework

Next, we describe stage 2 of our algorithm. In this stage, we try to guide the neural model

from stage 1 to improve the quality of code generation using a multi-target reinforcement

learning (RL) framework. For this purpose, we ask the neural model from stage 1 to

generate K output codes for each specification and compute a quality based reward for

all K codes. Specifically, for a specification (Sin
n ,L

in
n) we ask the BC model to generate

{Cout
1 , ..,Cout

k , ..,Cout
K }. Note that, we generate multiple codes again using the diverse

code generation setting of Section 2.4. We then compute a reward value for each Cout
k

using a reward function and the cumulative reward is used to optimize model parameters.

The overview of this stage is illustrated in Figure 5.3.

Cumulative reward function: The easiest approach to add a quality based reward

function is to use the same code quality scoring function Fcodequal introduced in Section

4. Thereby, we can define the cumulative reward as,

rew({Cout
1 , ..,Cout

k , ..,Cout
K }) =

K∑
k=1

Fcodequal

(
Cout
k

)
(5.2)

Model Training: In contrast to the previous stage, each training instance of this stage

consists of a specification and the K different predicted codes. The cumulative reward

over the predicted codes is the cost that needs to be maximized. We train the model

using the REINFORCE based objective defined in equation 2.5, with the difference being

we optimize over K codes for a specification instead of one; i.e we want to maximize

LRL(θ) ≈
N∑

n=1

R∑
r=1

1

R
rew ({Cr

1, ..,C
r
k, ..,C

r
K}) ,

where {Cr
1, ..,C

r
k, ..,C

r
K} ∼ pθ

(
· | (Sin

n ,L
in
n)
) (5.3)

where R is the total number of rollouts for each specification. Using the REINFORCE

policy gradient method, we update the parameters of the neural network πθ.

Chapter 5. Neural Code Generation Network - (CodeGen)Net 38

5.3 Integration with Beam Search

In this stage, we take the RL-fine tuned model from the previous stage and integrate

its decoder with beam search. This enables multiple hypothesis to be maintained at

every step of the decoding process, resulting in non greedy local decisions. We carry

out beam search for every target code prediction Cout
k , and this results in a considerably

improvement in the performance of the model. We show this empirically in Section 6.3.

After integration with beam search, we release our neural model for validation.

Chapter 6

Experiments

6.1 Task Generation and Code Quality Scoring

In this section, we describe our process of obtaining suitable visual tasks for generated

codes and define the scoring function to validate the quality of codes.

Obtaining visual tasks. For each generated code Cout by a model, we generate suitable

visual tasks {Tvis}Cout in order to measure the quality of Cout. We achieve this by using

a version of the task synthesis framework of Ahmed et al. [8] consisting of symbolic

execution and best-first search techniques. The best possible Tout
vis ∈ {Tvis}Cout(the one

with the highest Fcombqual value-see below) is used to measure the quality of Cout.

Note that, our framework is adaptable to any other task generation technique such as

neural generation or human-induced generation.

Code quality scoring. We first define a scoring function that evaluates a code Cout

in combination with each suitable visual task Tout
vis ∈ {Tvis}Cout . This combined scoring

function should encapsulate the desired quality criteria. To this end, we define the

function with the following constituent parts:

1. Fnocrash

(
Cout,Tout

vis

)
∈ 0, 1, which evaluates to 0 in case the agent crashes into a

wall and 1 otherwise.

2. Fnocut

(
Cout,Tout

vis

)
∈ 0, 1 which evaluates to 0 if there is a shortcut sequence of

actions smaller than Cout
size size that solves Tout

vis and 1 otherwise.

3. Fcov

(
Cout,Tout

vis

)
∈ 0, 1, which evaluates to 1 in the event of complete coverage of

code Cout by task Tout
vis and 0 otherwise.

4. Ftaskqual

(
Cout,Tout

vis

)
which acts as a measure of the interestingness and complexity

of the visual task, and is approximated as the sum of the normalized counts of

‘moves’, ‘turns’, ‘segments’, ‘long-segments’, ’pick-markers’ and ’put-markers’ in

39

Chapter 6. Experiments 40

the grid; where segments and long segments are sequences of ≥ 3 and ≥ 5 move

actions respectively.

That is,

Ftaskqual

(
Cout,Tout

vis

)
=

3

4
· 1

4
(
#moves

2n
+

#turns

n
+

#segments

n/2
+

#long-segments

n/3
)

+
1

4
· 1

2
(
#pick-markers

n
+

#put-markers

n
)

(6.1)

Overall, this combined scoring function is given by,

Fcombqual

(
Cout,Tout

vis

)
=
(
Fnocrash

(
Cout,Tout

vis

)
= 1
)
·
(
Fnocut

(
Cout,Tout

vis

)
= 1
)
·(

Fcov

(
Cout,Tout

vis

)
= 1
)
·
(
Ftaskqual

(
Cout,Tout

vis

)) (6.2)

The best suitable visual task is then used to evaluate the quality of the code, i.e.

Fcodequal

(
Cout

)
= max

{Tvis}Cout

Fcombqual

(
Cout,Tout

vis

)
(6.3)

6.2 Evaluation Setup

Baselines and models evaluated. We evaluate two baselines (Rand), (Rand)Cstr

along with two models from our pipeline (BC)Net and (CodeGen)Net.

Given a code specification, (Rand) generates random but syntactically valid codes. The

number of syntactically valid codes for any specification is too large, especially for more

complex specifications. To be feasible, we ask (Rand) to generate the same number of

codes as our system (CodeGen)Net.

(Rand)Cstr is an extension of (Rand), where we use the human selected constraints

of Ahmed et al. [8] to describe the desired semantics of the generated codes. These

constraints filter the randomly generated codes. In particular, we use the following con-

straints. (i) Minimality: this ensures redundant sequences such as turnRight-turnLeft

or pickMarker -putMarker which do not affect the output, as well as turnLeft-turnLeft-

turnLeft which could be achieved by a single turnRight are eliminated. (ii) Action

sequence constraint within nested conditionals: this prevents invalid actions within con-

ditionals such as pickMarker after noMarkerPresent condition. (iii) Optimal repeat

counter: this ensures action sub-sequences before and after a repeat block are not nested

within it.

(BC)Net is the behavior cloned only model(without RL fine-tuning) from our pipeline

which is integrated with beam search. (CodeGen)Net is the final model from our

Chapter 6. Experiments 41

Sd1 Sd2(i) Sd2(ii) Sd2(iii)

Sd3(i) Sd3(ii) Sd3(iii) Sd3(iv)

def Run(){
}

def Run(){
D 1(){
}

}

def Run(){
D 1(){
}
D 2(){
}

}

def Run(){
D 1(){
}
D 2(){
}
D 3(){
}

}

def Run(){
D 1(){
D 2(){
}
}

}

def Run(){
D 1(){
D 2(){
}
}
D 3(){
}

}

def Run(){
D 1(){
}
D 2(){
D 3(){
}
}

}

def Run(){
D 1(){
D 2(){
}
D 3(){
}
}

}

Figure 6.1: Illustration of the 8 different templates that we work with. All our
specifications are based on these 8 different templates, which are divided here according
to their depth. Here Sd1, Sd2[(i) to (iii)] and Sd3[(i) to (iv)] correspond to all sketches
of depth 1,2 and 3 respectively. Note that, D1,D2 and D3 can correspond to any control

block.

pipeline, i.e. the model that has undergone all the three stages(behavior cloning, RL-fine

tuning and integration with beam search) of our system.

Hyperparameters. For our neural models, we used linear encoders to encode the

specification(code sketch and code length). On the decoder side, we followed Bunel et

al. [10] and used a two layer LSTM network with hidden size of 256. The code sketch,

code length and token at previous step are all embedded in the form of 256 dimensional

vectors and passed as input to the LSTM. The output of the LSTM at each time step

is passed through a handwritten syntax checker and a probability distribution over the

next tokens is obtained. All training is performed with Adam optimizer with a learning

rate of 10−4. Behavior cloning used a batch size of 128 and RL training used a batch

size of 8. Beam search was used with a beam size of 64.

For the multi-target optimization component, we used a transformer encoder to learn

the mapping to key values. The number of key values was set to 10.

Code specifications and expert demonstrations. We use 1000 training specifi-

cations and 100 validation specifications of Karel, each differing in their sketch/length

/both. The specifications are based on 8 different templates as shown in Figure 6.1, with

a maximum depth Sdepth of 3 and maximum action blocks of 15. The training specifi-

cations also had 10 expert generated codes, with each code having a score Fcodequal ≥
0.5. These were used to train the neural models, and the remaining 100 were used to

validate the baseline as well as the neural models.

Chapter 6. Experiments 42

Method Fraction of codes with δ ≥ 0.5 Fraction of codes with δ ≥ 0.7

Sd1 Sd2 Sd3 Sall Sd1 Sd2 Sd3 Sall

(Rand) 0.23 0.13 0.13 0.14 0.00 0.02 0.07 0.06

(Rand)Cstr 0.90 0.31 0.29 0.31 0.00 0.13 0.18 0.16

(BC)Net 0.90 0.69 0.48 0.52 0.00 0.14 0.25 0.22

(CodeGen)Net 0.90 0.78 0.71 0.73 0.00 0.13 0.45 0.39

Table 6.1: Results for the Karel specifications for two different quality thresholds: δ =
0.5 and δ = 0.7. Results are shown separately for different specification templates SdX and

for all specifications combined Sall. See Section 6.3 for more description.

Evaluation Criteria. We evaluate the generated codes based on the objectives of

Section 4.2. Since our objectives are encapsulated within the code quality scoring func-

tion, we calculate the quality score of each generated code and compare with a desired

threshold value δ. Specifically, we ask each model to generate 10 codes for each valida-

tion specification, and evaluate the performance depending on the fraction of the total

generated codes that satisfy the threshold.

6.3 Results

Performance comparison.

Table 6.1 shows the performance of the models for validation specifications of depth

levels 1,2,3 separately, and all combined; and for two quality threshold values (δ): 0.5

(good quality) and 0.7 (very good quality).

Let us consider δ of 0.5 first. The simple baseline (Rand) performs poorly independent

of the depth level. This supports our belief that, the fraction of good quality codes

among the syntactically valid codes is small, making random generation not a viable

option. The other baseline (Rand)Cstr seems to improve compared to (Rand). This is

especially true for depth level 1 specifications, where it meets the quality threshold for

90% of the generated codes, thereby getting a score of 0.9. However, for higher depth

levels(2 and 3), the number of generated codes satisfying δ drops significantly, indicating

the difficulty in developing handcrafted constraints that can capture all the features of

good quality codes. On the other hand, our neural models (BC)Net and (CodeGen)Net

are able to keep up with the constraint based baseline for depth level 1 specifications.

However, they are able to vastly improve for higher depth levels of 2 and 3, indicating

that a neural framework is better able to learn the good quality codes’ features. Among

the neural models, (CodeGen)net provides a slight improvement over (BC)net for depth

level 2 specifications, but a high improvement of 0.33 for depth level 3 specifications. We

hypothesize that, this happens because the number of patterns that lead to good quality

Chapter 6. Experiments 43

codes increases with the increase in depth level, and using RL, the (CodeGen)net model

is able to explore and find more of these patterns.

The performance of the models are on similar lines even if we consider a higher quality

threshold, δ of 0.7. None of the generated codes for depth 1 specifications meet the

threshold, across the models; this indicates that the codes of depth 1 have a maximum

quality score of less than 0.7. Interestingly for depth 2 specifications, the performance

of the the (Rand)Cstr baseline and neural models are similar, indicating that the neural

models find it difficult to find patterns that can lead to very good quality codes for lower

depth levels. But as the depth increases, i.e. for depth 3 specifications, the neural models

are able to perform much better than the (Rand)Cstr baseline. This is especially true

for (CodeGen)Net, which sees an improvement of 0.27 over the (Rand)Cstr baseline.

Qualitative Analysis.

We perform qualitative analysis for a specification with Sdepth = 3, Sstruct =

{Run{WHILE{IF}}} and Lin= 5. The codes generated by our model (CodeGen)Net

are shown in the Figure 6.2 from (a) to (j). We also show example suitable visual tasks

(A), (B) corresponding to two good quality codes (a), (b), and (H), (I) corresponding

to two bad quality codes (h), (i) in Figure 6.3. We use δ of 0.5.

(CodeGen)Net is able to satisfy the threshold for 7 out of the 10 codes(code (a) to code

(g)), it was asked to generate. This is close to the 0.71 overall score for all the specifica-

tions of depth 3, as shown in Table 6.1. Most of the codes that satisfy this threshold are

free from semantic irregularities, and can lead to interesting tasks, examples of which

can be seen in the two tasks (A) and (B) produced using codes (a) and (b); these can be

used as new practice tasks for student learning. However, this is not always the case. For

example, code (e) in Figure 6.2 contains an if block with leftIsClear condition followed

by a turnRight action: this does not seem a good quality code sequence intuitively, but

the code still gets a good score. This indicates a limitation in the quality scoring func-

tion. Also, code(c) has limited utility since it can only lead to tasks with simple agent

movements; however this can be filtered with a higher δ value.

On the other hand, code (h) to code(j) suffer from severe semantic irregularities: code

(h) and code (j) always lead to crash in execution/infinite loop in case the if block of

the codes is entered, while the if block in code (i) is redundant. These codes also cannot

lead to any interesting task, as seen through the corresponding visual tasks (H) and (I)

for code (h) and code (i) respectively. Hence, there are bad quality codes and do not

satisfy the threshold.

Further, we also perform analysis for the same specification for the baselines (Rand) and

(Rand)Cstr, and describe it in the appendix section A.2.

Chapter 6. Experiments 44

Sin

def Run(){
While(cond){
If(cond){
}

}
}

Lin:=5

Code
specification

def Run(){
While(no markersPresent){
putMarker
move
If(leftIsClear){
putMarker

}
}

}

(a)

def Run(){
pickMarker
While(rightIsClear){
move
If(leftIsClear){
turnLeft

}
}

}

(b)

def Run(){
pickMarker
While(rightIsClear){
move
If(frontIsClear){
turnLeft

}
}

}

(c)

def Run(){
move
While(leftIsClear){
move
If(leftIsClear){
putMarker

}
}

}

(d)

def Run(){
pickMarker
While(rightIsClear){
If(leftIsClear){
turnRight

}
move
}

}

(e)

def Run(){
move
While(no markersPresent){
putMarker
If(leftIsClear){
move

}
}

}

(f)

def Run(){
pickMarker
While(rightIsClear){
move
If(markersPresent){
putMarker

}
}

}

(g)

def Run(){
move
While(leftIsClear){
move
If(frontIsClear){
turnLeft

}
}

}

(h)

def Run(){
move
While(leftIsClear){
move
If(leftIsClear){
move

}
}

}

(i)

def Run(){
move
While(leftIsClear){
move
If(leftIsClear){
turnLeft

}
}

}

(j)

Figure 6.2: Illustration of 10 different codes (a) to (j) generated by our model (Code-
Gen)Net for the code specification shown at the top. In this case, the model generated 7

good quality codes (a) to (g), and 3 bad quality codes (h) to (j), for δ of 0.5.

Chapter 6. Experiments 45

Sin

def Run(){
While(cond){
If(cond){
}

}
}

Lin:=5

Code
specification

def Run(){
While(no markersPresent){
putMarker
move
If(leftIsClear){
putMarker

}
}

}

(a) (A)

def Run(){
pickMarker
While(rightIsClear){
move
If(leftIsClear){
turnLeft

}
}

}

(b) (B)

def Run(){
move
While(leftIsClear){
move
If(frontIsClear){
turnLeft

}
}

}

(h) (H)

def Run(){
move
While(leftIsClear){
move
If(leftIsClear){
move

}
}

}

(i) (I)

Figure 6.3: Reusing two good and two bad quality codes from the previous Figure 6.2 to
illustrate the codes along with one of their suitable visual tasks. The good quality codes (a)
and (b) can lead to interesting practice tasks as shown in (A) and (B) respectively, while
the bad quality codes (h) and (i) do not lead to interesting tasks, as shown in (H) and (I)

respectively.

Chapter 6. Experiments 46

Method Type Fraction of codes with δ ≥ 0.5

Sd1 Sd2 Sd3 Sall

(BC)Net
without multi-code

optimization
0.80 0.46 0.30 0.33

(BC)Net
with multi-code
optimization

0.90 0.69 0.48 0.52

Table 6.2: Illustration of difference in performance of (BC)Net with and without multi-
code optimization.

Method Type Fraction of codes with δ ≥ 0.5

Sd1 Sd2 Sd3 Sall

(BC)Net without beam search 0.87 0.43 0.24 0.28

(BC)Net with beam search 0.90 0.69 0.48 0.52

(CodeGen)Net without beam search 0.90 0.64 0.50 0.52

(CodeGen)Net with beam search 0.90 0.78 0.71 0.73

Table 6.3: Illustration of difference in performance of the neural models with and without
beam search.

Ablations.

We perform ablation studies to analyze the advantage of using multi-code optimization

during behavior cloning, and integration of beam search to the neural frameworks and

report the results in Table 6.2 and 6.3 respectively. We again use δ of 0.5 to validate

the quality of all the generated codes.

First, in Table 6.2, (BC)Net with multi-code optimization is the same behavior cloned-

only model described in Section 6.2, (BC)Net without multi-code optimization is also a

behavior cloned-only model, but trained on a single reference dataset with the standard

MLE optimization objective of 5.1. We observe that (BC)Net with multi-code opti-

mization consistently outperforms the (BC)Net without multi-code optimization model,

across different specification depth levels. This confirms our claims that, using multi-

code optimization helps to learn the one-to-many mapping of specifications and codes,

and results in diverse good quality code generation.

Second, in Table 6.3, we compare the performance of (BC)Net and (CodeGen)Net with

and without beam search. We observe that, using beam search leads to better perfor-

mance for either models. For (BC)Net the improvement is by a high score of 0.24 for all

specifications, while for (CodeGen)Net is by a equally high score of 0.21. This result is in

line with other areas such as neural program synthesis [10][49] or neural machine trans-

lation [30][70], which have also seen beam search as an important tool for performance

improvement.

Chapter 7

Conclusions

7.1 Discussion

We presented a novel code generation framework (CodeGen)Net for synthesizing quali-

tative and diverse codes. The main novelties lie in using neural methodologies to auto-

matically learn features of good quality codes leading to an automated code synthesizer.

We empirically showed that our neural framework performs significantly better than

random and constraint based techniques for a set of Karel based specifications. Further-

more, we demonstrated through several examples, that having such a high performing

synthesizer can lead to new practice tasks useful for tutors and students in block-based

visual programming environments. We believe that, this is an important step towards

mitigating the problem of limited availability of practice exercises, and hence can vastly

improve the success of pedagogy in block-based visual programming environments.

7.2 Limitations & Future Work

We successfully developed a neural framework for qualitative code synthesis. However,

we still see some limitations in the current work, which can be improved upon in future

works.

1. Code quality scoring improvement. Though the current scoring function is

able to cover many of the things that humans associate to good quality codes, it is

still handcrafted based on the environment knowledge and is not perfect. For exam-

ple, in Figure 6.2, code (e) contains an if block with leftIsClear condition followed

by a turnRight action: this does not seem a good quality code sequence intuitively,

but still the code gets a good score by the quality scoring function. Automatically

learning the code quality scoring function, or using a teacher/human-in-the-loop

for quality feedback could be possible future directions that could cover better all

the desired code quality features.

47

Chapter 7. Conclusions 48

2. Code diversity improvement. Our framework has the ability to inherently

learn to generate diverse codes due to the use of multi-code optimization and

generation techniques. However, we see this is not always the case, and for some

specifications the model can collapse to generate similar, multiple codes. This is

increasingly seen after RL fine-tuning, possibly due to the well known problem of

reward hacking [56]. A possible future work could include a combination of quality

and diversity based reward as in [34], leading to further improvement in diversity

among the generated codes.

3. Use of more advanced neural techniques. In this work, we focused on de-

veloping a neural pipeline to solve our problem. However, the performance of the

models could be further improved by using improved neural techniques that have

been developed recently. For example, using a transformer decoder for output code

generation, or using more advanced RL algorithms such as PPO for RL optimiza-

tion. It could be interesting to see the difference in performance after utilizing

these techniques.

4. Extending to other programming environments. In this work, we restricted

the empirical evaluation to the Karel environment. However, our methodology

can easily be extended to other block-based environments such as HoC or Scratch.

More broadly, it could be interesting to extend our methodology to general-purpose

programming languages such as Python.

7.3 Broader Impact

We believe our work can help in improving the success of pedagogy in block-based

visual programming environments. Our code generation framework generates a large

number of good quality codes, which can be used in a variety of different ways in these

environments. It can be used to generate new tasks corresponding to available expert

tasks, which are similar in terms of the programming concepts they exercise, helping the

students to master each concept. Or it can be used to create a personalized curriculum of

problems based on current student knowledge, or a general curriculum based on evolution

in complexity in terms of programming concepts; these can increase the efficiency of

student learning process. Or just in the general sense, it can be used to create new

practice tasks for students to learn from, or to provide new assignments/homework for

students to check their knowledge.

List of Figures

Figure 1.1 Here we show a input code specification consisting of a code sketch

and desired code length (Sin,Lin) on the left, and sample codes satisfy-

ing it from (a) to (f) on the right. The codes (a) to (d) are of bad

quality, since they are semantically incorrect: (a) has consecutive action

blocks which do not contribute to the output: turnLeft actions followed

by turnRight, (b) has suboptimal action block sequence: three consecu-

tive turnLeft which can be performed by a single turnRight, (c) and (d)

always cause crash in execution if loops are entered: (c) has a condition

to check for no markers followed by a pickMarker action, while (d) has a

condition to check whether front is not clear followed by a move action.

The codes (e) and (f) are semantically correct and are also good quality

codes. 14

Figure 1.2 Good quality codes should also lead to new practice tasks useful

for student learning. Here, task (i) is produced using code (e) and task

(ii) is produced using code (f) from Figure 1.1. Both tasks can be useful

for student learning and hence, code (e) and code (f) are considered as

good quality codes. 15

Figure 1.3 Here we show another example. Input code specification is shown

at the top, sample codes for it are shown on the left side and an example

task produced from each code are shown on the right side. The codes (a)

and (b) are bad quality codes, since they are semantically incorrect: (a)

has a suboptimal repeat block: three move action blocks can be replaced

by a single move action block with an increase in repeat count, (b) has

a redundant sequence of action blocks which do not contribute to the

output: putMarker action followed by pickMarker. (a) and (b) also do

not lead to useful practice tasks as shown in (A) and (B) respectively.

The codes (c) and (d) are good quality codes, since they are semanti-

cally correct, and lead to useful practice tasks as shown in (C) and (D)

respectively. 17

Figure 2.1 An example Karel programming problem, One ball in each spot

from the Intro to Programming with Karel course by CodeHS.com [2]. . . 20

Figure 2.2 The syntax of Karel DSL. 20

49

List of Figures 50

Figure 2.3 Different types of specifications that have been used in program

synthesis along with their corresponding programs. (a) uses formal spec-

ification, (b) uses text based input-output examples, while (c) uses a

visual input-output example. Corresponding programs are shown in (A),

(B) and (C) respectively. 21

Figure 4.1 Karel Code DSL . 31

Figure 4.2 Karel Sketch DSL . 31

Figure 4.3 Reusing examples from Section 1 to define the preliminaries. Shown

here is a specification (a), code (b) and visual task (c). 32

Figure 5.1 Our algorithm (CodeGen)Net takes as input a code specification

(Sin,Lin) and generates a set of qualitative and diverse codes {Cout
1 , ..,Cout

k , ..,Cout
K }. 35

Figure 5.2 Stage 1 of our technique-behavior cloning uses a set of expert

demonstrations containing code specifications and good quality codes. . . 36

Figure 5.3 Stage 2 of our technique-fine tuning the neural model from stage

1 with a multi-target reinforcement learning framework. 37

Figure 6.1 Illustration of the 8 different templates that we work with. All

our specifications are based on these 8 different templates, which are

divided here according to their depth. Here Sd1, Sd2[(i) to (iii)] and

Sd3[(i) to (iv)] correspond to all sketches of depth 1,2 and 3 respectively.

Note that, D1,D2 and D3 can correspond to any control block. 41

Figure 6.2 Illustration of 10 different codes (a) to (j) generated by our model

(CodeGen)Net for the code specification shown at the top. In this case,

the model generated 7 good quality codes (a) to (g), and 3 bad quality

codes (h) to (j), for δ of 0.5. 44

Figure 6.3 Reusing two good and two bad quality codes from the previous

Figure 6.2 to illustrate the codes along with one of their suitable visual

tasks. The good quality codes (a) and (b) can lead to interesting practice

tasks as shown in (A) and (B) respectively, while the bad quality codes (h)

and (i) do not lead to interesting tasks, as shown in (H) and (I) respectively. 45

Figure A.1 Illustration of 10 different codes (a) to (j) generated by the (Rand)

baseline for the code specification shown at the top. In this case, the

model generated 2 good quality codes (a) and (b), and 8 bad quality

codes (c) to (j), for δ of 0.5. 63

Figure A.2 Illustration of 10 different codes (a) to (j) generated by the (Rand)Cstr

baseline for the code specification shown at the top. In this case, the

model generated 5 good quality codes (a) to (e), and 5 bad quality codes

(f) to (j), for δ of 0.5. 64

List of Figures 51

Figure A.3 Illustration of 10 different codes (a) to (j) generated by our neural

framework for the code specification shown at the top. In this case, the

model generated 8 good quality codes (a) to (h), and 2 bad quality codes

(i) and (j), for δ of 0.5. 66

Figure A.4 Reusing two good and two bad quality codes from the previous

Figure A.3 to illustrate the codes along with one of their suitable visual

tasks. The good quality codes (a) and (b) can lead to interesting prac-

tice tasks as shown in (A) and (B) respectively, while the bad quality

codes (i) and (j) do not lead to interesting tasks, as shown in (I) and (J)

respectively. 67

List of Tables

Table 6.1 Results for the Karel specifications for two different quality thresh-

olds: δ = 0.5 and δ = 0.7. Results are shown separately for different

specification templates SdX and for all specifications combined Sall. See

Section 6.3 for more description. 42

Table 6.2 Illustration of difference in performance of (BC)Net with and with-

out multi-code optimization. 46

Table 6.3 Illustration of difference in performance of the neural models with

and without beam search. 46

52

Bibliography

[1] Stanford Karel IDE. https://stanford.edu/~cpiech/karel/learn.html, . Ac-

cessed: 2023-03-29.

[2] CodeHS platform. Intro to Programming with Karel the Dog. . https://codehs.

com/info/curriculum/introkarel, . Accessed: 2023-03-31.

[3] Hour of Code. http://hourofcode.codehs.com/, . Accessed: 2023-03-07.

[4] Code.org platform. Hour of Code: Classic Maze Challenge. . https://studio.

code.org/s/hourofcode, . Accessed: 2023-03-31.

[5] Stanford CS106A course page. https://see.stanford.edu/Course/CS106A, . Ac-

cessed: 2023-03-07.

[6] Karel programming language documentation. http://mormegil.wz.cz/prog/

karel/prog_doc.htm, . Accessed: 2023-03-07.

[7] Umair Ahmed, Sumit Gulwani, and Amey Karkare. Automatically generating prob-

lems and solutions for natural deduction. pages 1968–1975, 08 2013.

[8] Umair Z. Ahmed, Maria Christakis, Aleksandr Efremov, Nigel Fernandez, Ahana

Ghosh, Abhik Roychoudhury, and Adish Singla. Synthesizing tasks for block-based

programming. CoRR, abs/2006.16913, 2020. URL https://arxiv.org/abs/2006.

16913.

[9] Chris Alvin, Sumit Gulwani, Rupak Majumdar, and Supratik Mukhopadhyay. Syn-

thesis of geometry proof problems. Proceedings of the National Conference on Ar-

tificial Intelligence, 1:245–252, 06 2014. doi: 10.1609/aaai.v28i1.8745.

[10] Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet

Kohli. Leveraging grammar and reinforcement learning for neural program synthe-

sis. In International Conference on Learning Representations(ICLR). arXiv, 2018.

URL https://arxiv.org/abs/1805.04276.

[11] R. M. Burstall and John Darlington. A transformation system for developing

recursive programs. J. ACM, 24(1):44–67, jan 1977. ISSN 0004-5411. doi:

10.1145/321992.321996. URL https://doi.org/10.1145/321992.321996.

[12] Xinyun Chen, Chang Liu, and Dawn Xiaodong Song. Execution-guided neural

program synthesis. In International Conference on Learning Representations, 2018.

53

https://stanford.edu/~cpiech/karel/learn.html
https://codehs.com/info/curriculum/introkarel
https://codehs.com/info/curriculum/introkarel
http://hourofcode.codehs.com/
https://studio.code.org/s/hourofcode
https://studio.code.org/s/hourofcode
https://see.stanford.edu/Course/CS106A
http://mormegil.wz.cz/prog/karel/prog_doc.htm
http://mormegil.wz.cz/prog/karel/prog_doc.htm
https://arxiv.org/abs/2006.16913
https://arxiv.org/abs/2006.16913
https://arxiv.org/abs/1805.04276
https://doi.org/10.1145/321992.321996

Bibliography 54

[13] Xinyun Chen, Dawn Song, and Yuandong Tian. Latent execution for neural pro-

gram synthesis beyond domain-specific languages. CoRR, abs/2107.00101, 2021.

URL https://arxiv.org/abs/2107.00101.

[14] Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman, David

Maulsby, Brad A. Myers, and Alan Turransky, editors. Watch What I Do: Program-

ming by Demonstration. MIT Press, Cambridge, MA, USA, 1993. ISBN 0262032139.

[15] Jacob Devlin, Rudy R Bunel, Rishabh Singh, Matthew Hausknecht, and Push-

meet Kohli. Neural program meta-induction. In I. Guyon, U. Von Luxburg,

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,

Advances in Neural Information Processing Systems, volume 30. Curran Asso-

ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/

3bf55bbad370a8fcad1d09b005e278c2-Paper.pdf.

[16] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman

Mohamed, and Pushmeet Kohli. Robustfill: Neural program learning under noisy

I/O. CoRR, abs/1703.07469, 2017. URL http://arxiv.org/abs/1703.07469.

[17] Xuguang Duan, Qi Wu, Chuang Gan, Yiwei Zhang, Wenbing Huang, Anton van den

Hengel, and Wenwu Zhu. Watch, reason and code: Learning to represent videos

using program. In Proceedings of the 27th ACM International Conference on Mul-

timedia, MM ’19, page 1543–1551, New York, NY, USA, 2019. Association for

Computing Machinery. ISBN 9781450368896. doi: 10.1145/3343031.3351094. URL

https://doi.org/10.1145/3343031.3351094.

[18] Aleksandr Efremov, Ahana Ghosh, and Adish Kumar Singla. Zero-shot learning of

hint policy via reinforcement learning and program synthesis. In Educational Data

Mining, 2020.

[19] Abhay Garg, Anand Sriraman, Kunal Pagarey, and Shirish Karande. Are trans-

formers all that karel needs? In Advances in Programming Languages and Neu-

rosymbolic Systems Workshop, 2021. URL https://openreview.net/forum?id=

qGDIkNmWydG.

[20] Ahana Ghosh, Sebastian Tschiatschek, Sam Devlin, and Adish Singla. Adaptive

scaffolding in block-based programming via synthesizing new tasks as pop quizzes,

2023.

[21] Cordell Green. Application of theorem proving to problem solving. In Proceedings

of the 1st International Joint Conference on Artificial Intelligence, IJCAI’69, page

219–239, San Francisco, CA, USA, 1969. Morgan Kaufmann Publishers Inc.

[22] Sumit Gulwani, William R. Harris, and Rishabh Singh. Spreadsheet data manipula-

tion using examples. Commun. ACM, 55(8):97–105, aug 2012. ISSN 0001-0782. doi:

10.1145/2240236.2240260. URL https://doi.org/10.1145/2240236.2240260.

https://arxiv.org/abs/2107.00101
https://proceedings.neurips.cc/paper/2017/file/3bf55bbad370a8fcad1d09b005e278c2-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3bf55bbad370a8fcad1d09b005e278c2-Paper.pdf
http://arxiv.org/abs/1703.07469
https://doi.org/10.1145/3343031.3351094
https://openreview.net/forum?id=qGDIkNmWydG
https://openreview.net/forum?id=qGDIkNmWydG
https://doi.org/10.1145/2240236.2240260

Bibliography 55

[23] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthesis. Foun-

dations and Trends® in Programming Languages, 4(1-2):1–119, 2017. ISSN 2325-

1107. doi: 10.1561/2500000010. URL http://dx.doi.org/10.1561/2500000010.

[24] Kavi Gupta, Peter Ebert Christensen, Xinyun Chen, and Dawn Song. Synthe-

size, execute and debug: Learning to repair for neural program synthesis. CoRR,

abs/2007.08095, 2020. URL https://arxiv.org/abs/2007.08095.

[25] Joy He-Yueya and Adish Singla. Quizzing policy using reinforcement learning for

inferring the student knowledge state. International Educational Data Mining So-

ciety, 2021.

[26] Di Huang, Rui Zhang, Xing Hu, Xishan Zhang, Pengwei Jin, Nan Li, Zidong Du,

Qi Guo, and Yunji Chen. Neural program synthesis with query, 2022.

[27] James C. King. Symbolic execution and program testing. Commun. ACM, 19(7):

385–394, jul 1976. ISSN 0001-0782. doi: 10.1145/360248.360252. URL https:

//doi.org/10.1145/360248.360252.

[28] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022.

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-

sification with deep convolutional neural networks. In F. Pereira, C.J.

Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in Neu-

ral Information Processing Systems, volume 25. Curran Associates, Inc.,

2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/file/

c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[30] Marie-Anne Lachaux, Armand Joulin, and Guillaume Lample. Target conditioning

for one-to-many generation. pages 2853–2862, 01 2020. doi: 10.18653/v1/2020.

findings-emnlp.256.

[31] Yann LeCun, Y. Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436–44,

05 2015. doi: 10.1038/nature14539.

[32] Jiwei Li, Will Monroe, and Dan Jurafsky. A simple, fast diverse decoding algorithm

for neural generation, 2016.

[33] H. Lieberman. Your wish is my command: Programming by example. 01 2001.

[34] Huan Lin, Baosong Yang, Liang Yao, Dayiheng Liu, Haibo Zhang, Jun Xie,

Min Zhang, and Jinsong Su. Bridging the gap between training and inference:

Multi-candidate optimization for diverse neural machine translation. In Find-

ings of the Association for Computational Linguistics: NAACL 2022, pages 2622–

2632, Seattle, United States, July 2022. Association for Computational Linguis-

tics. doi: 10.18653/v1/2022.findings-naacl.200. URL https://aclanthology.org/

2022.findings-naacl.200.

http://dx.doi.org/10.1561/2500000010
https://arxiv.org/abs/2007.08095
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://aclanthology.org/2022.findings-naacl.200
https://aclanthology.org/2022.findings-naacl.200

Bibliography 56

[35] Z. Manna and R. Waldinger. Synthesis: Dreams → programs. IEEE Transactions

on Software Engineering, SE-5(4):294–328, 1979. doi: 10.1109/TSE.1979.234198.

[36] Zohar Manna and Richard Waldinger. A deductive approach to program synthesis.

ACM Trans. Program. Lang. Syst., 2(1):90–121, jan 1980. ISSN 0164-0925. doi:

10.1145/357084.357090. URL https://doi.org/10.1145/357084.357090.

[37] Zohar Manna and Richard J. Waldinger. Toward automatic program synthesis.

Commun. ACM, 14(3):151–165, mar 1971. ISSN 0001-0782. doi: 10.1145/362566.

362568. URL https://doi.org/10.1145/362566.362568.

[38] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with deep

reinforcement learning. CoRR, abs/1312.5602, 2013. URL http://arxiv.org/

abs/1312.5602.

[39] Benjamin Paaßen, Barbara Hammer, Thomas William Price, Tiffany Barnes, Se-

bastian Gross, and Niels Pinkwart. The continuous hint factory - providing hints

in vast and sparsely populated edit distance spaces. CoRR, abs/1708.06564, 2017.

URL http://arxiv.org/abs/1708.06564.

[40] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengy-

ong Zhou, and Pushmeet Kohli. Neuro-symbolic program synthesis. CoRR,

abs/1611.01855, 2016. URL http://arxiv.org/abs/1611.01855.

[41] Richard E. Pattis. Karel the Robot: A Gentle Introduction to the Art of Program-

ming. John Wiley amp; Sons, Inc., USA, 1st edition, 1981. ISBN 0471089281.

[42] Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran Sa-

hami, and Leonidas Guibas. Learning program embeddings to propagate feedback

on student code, 2015.

[43] Chris Piech, Mehran Sahami, Jonathan Huang, and Leonidas Guibas. Au-

tonomously generating hints by inferring problem solving policies. In Proceed-

ings of the Second (2015) ACM Conference on Learning @ Scale, L@S ’15, page

195–204, New York, NY, USA, 2015. Association for Computing Machinery. ISBN

9781450334112. doi: 10.1145/2724660.2724668. URL https://doi.org/10.1145/

2724660.2724668.

[44] Thomas Price, Rui Zhi, and Tiffany Barnes. Evaluation of a data-driven feedback

algorithm for open-ended programming. 06 2017.

[45] Thomas W. Price and Tiffany Barnes. Position paper: Block-based programming

should offer intelligent support for learners. In 2017 IEEE Blocks and Beyond

Workshop (BB), pages 65–68, 2017. doi: 10.1109/BLOCKS.2017.8120414.

https://doi.org/10.1145/357084.357090
https://doi.org/10.1145/362566.362568
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1708.06564
http://arxiv.org/abs/1611.01855
https://doi.org/10.1145/2724660.2724668
https://doi.org/10.1145/2724660.2724668

Bibliography 57

[46] Thomas W. Price, Yihuan Dong, and Dragan Lipovac. Isnap: Towards intelligent

tutoring in novice programming environments. In Proceedings of the 2017 ACM

SIGCSE Technical Symposium on Computer Science Education, SIGCSE ’17, page

483–488, New York, NY, USA, 2017. Association for Computing Machinery. ISBN

9781450346986. doi: 10.1145/3017680.3017762. URL https://doi.org/10.1145/

3017680.3017762.

[47] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Eve-

lyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian

Silverman, and Yasmin Kafai. Scratch: Programming for all. Commun. ACM,

52(11):60–67, nov 2009. ISSN 0001-0782. doi: 10.1145/1592761.1592779. URL

https://doi.org/10.1145/1592761.1592779.

[48] Tianxiao Shen, Myle Ott, Michael Auli, and Marc’Aurelio Ranzato. Mixture models

for diverse machine translation: Tricks of the trade. CoRR, abs/1902.07816, 2019.

URL http://arxiv.org/abs/1902.07816.

[49] Eui Chul Shin, Illia Polosukhin, and Dawn Song. Improving neural pro-

gram synthesis with inferred execution traces. In S. Bengio, H. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Ad-

vances in Neural Information Processing Systems, volume 31. Curran Asso-

ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/

7776e88b0c189539098176589250bcba-Paper.pdf.

[50] Richard Shin, Illia Polosukhin, and Dawn Xiaodong Song. Towards specification-

directed program repair. In International Conference on Learning Representations,

2018.

[51] Richard Shin, Neel Kant, Kavi Gupta, Christopher Bender, Brandon Trabucco,

Rishabh Singh, and Dawn Song. Synthetic datasets for neural program synthesis.

CoRR, abs/1912.12345, 2019. URL http://arxiv.org/abs/1912.12345.

[52] Raphael Shu, Hideki Nakayama, and Kyunghyun Cho. Generating diverse trans-

lations with sentence codes. In Proceedings of the 57th Annual Meeting of the

Association for Computational Linguistics, pages 1823–1827, Florence, Italy, July

2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1177. URL

https://aclanthology.org/P19-1177.

[53] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated feed-

back generation for introductory programming assignments. SIGPLAN Not., 48

(6):15–26, jun 2013. ISSN 0362-1340. doi: 10.1145/2499370.2462195. URL

https://doi.org/10.1145/2499370.2462195.

[54] Rohit Singh, Sumit Gulwani, and Sriram Rajamani. Automatically generating

algebra problems. Proceedings of the National Conference on Artificial Intelligence,

2, 01 2012. doi: 10.1609/aaai.v26i1.8341.

https://doi.org/10.1145/3017680.3017762
https://doi.org/10.1145/3017680.3017762
https://doi.org/10.1145/1592761.1592779
http://arxiv.org/abs/1902.07816
https://proceedings.neurips.cc/paper/2018/file/7776e88b0c189539098176589250bcba-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/7776e88b0c189539098176589250bcba-Paper.pdf
http://arxiv.org/abs/1912.12345
https://aclanthology.org/P19-1177
https://doi.org/10.1145/2499370.2462195

Bibliography 58

[55] Adish Singla, Anna N. Rafferty, Goran Radanovic, and Neil T. Heffernan. Rein-

forcement learning for education: Opportunities and challenges, 2021.

[56] Joar Skalse, Nikolaus H. R. Howe, Dmitrii Krasheninnikov, and David Krueger.

Defining and characterizing reward hacking, 2022.

[57] Alexander Suh and Yuval Timen. Creating synthetic datasets via evolution for

neural program synthesis. CoRR, abs/2003.10485, 2020. URL https://arxiv.

org/abs/2003.10485.

[58] Shao-Hua Sun, Hyeonwoo Noh, Sriram Somasundaram, and Joseph Lim. Neural

program synthesis from diverse demonstration videos. In Proceedings of the 35th

International Conference on Machine Learning, 2018.

[59] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

The MIT Press, second edition, 2018. URL http://incompleteideas.net/book/

the-book-2nd.html.

[60] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansõur. Pol-

icy gradient methods for reinforcement learning with function approximation. In

S. Solla, T. Leen, and K. Müller, editors, Advances in Neural Information Process-

ing Systems, volume 12. MIT Press, 1999. URL https://proceedings.neurips.

cc/paper/1999/file/464d828b85b0bed98e80ade0\a5c43b0f-Paper.pdf.

[61] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In

Proceedings of the 31st International Conference on Neural Information Processing

Systems, NIPS’17, page 6000–6010, Red Hook, NY, USA, 2017. Curran Associates

Inc. ISBN 9781510860964.

[62] Ashwin K. Vijayakumar, Michael Cogswell, Ramprasaath R. Selvaraju, Qing Sun,

Stefan Lee, David J. Crandall, and Dhruv Batra. Diverse beam search for improved

description of complex scenes. In AAAI Conference on Artificial Intelligence, 2018.

[63] Richard J. Waldinger and Richard C. T. Lee. Prow: A step toward automatic

program writing. IJCAI’69, page 241–252, San Francisco, CA, USA, 1969. Morgan

Kaufmann Publishers Inc.

[64] L. Wang, Angela Sy, Larry Liu, and Chris Piech. Learning to represent student

knowledge on programming exercises using deep learning. In Educational Data

Mining, 2017.

[65] David Weintrop and Uri Wilensky. To block or not to block, that is the

question: Students’ perceptions of blocks-based programming. IDC ’15, page

199–208, New York, NY, USA, 2015. Association for Computing Machinery. ISBN

9781450335904. doi: 10.1145/2771839.2771860. URL https://doi.org/10.1145/

2771839.2771860.

https://arxiv.org/abs/2003.10485
https://arxiv.org/abs/2003.10485
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0\ a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0\ a5c43b0f-Paper.pdf
https://doi.org/10.1145/2771839.2771860
https://doi.org/10.1145/2771839.2771860

Bibliography 59

[66] David Weintrop and Uri Wilensky. Comparing block-based and text-based program-

ming in high school computer science classrooms. ACM Trans. Comput. Educ., 18

(1), oct 2017. doi: 10.1145/3089799. URL https://doi.org/10.1145/3089799.

[67] Ronald J. Williams. Simple statistical gradient-following algorithms for connection-

ist reinforcement learning. Mach. Learn., 8(3–4):229–256, may 1992. ISSN 0885-

6125. doi: 10.1007/BF00992696. URL https://doi.org/10.1007/BF00992696.

[68] Mike Wu, Milan Mosse, Noah D. Goodman, and Chris Piech. Zero shot learn-

ing for code education: Rubric sampling with deep learning inference. CoRR,

abs/1809.01357, 2018. URL http://arxiv.org/abs/1809.01357.

[69] Xuanfu Wu, Yang Feng, and Chenze Shao. Generating diverse translation from

model distribution with dropout. In Proceedings of the 2020 Conference on Empir-

ical Methods in Natural Language Processing (EMNLP), pages 1088–1097, Online,

November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.

emnlp-main.82. URL https://aclanthology.org/2020.emnlp-main.82.

[70] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff

Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan

Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,

Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick,

Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neu-

ral machine translation system: Bridging the gap between human and machine

translation, 2016. URL https://arxiv.org/abs/1609.08144.

[71] Jooyong Yi, Umair Z. Ahmed, Amey Karkare, Shin Hwei Tan, and Abhik Roy-

choudhury. A feasibility study of using automated program repair for introductory

programming assignments. In Proceedings of the 2017 11th Joint Meeting on Foun-

dations of Software Engineering, ESEC/FSE 2017, page 740–751, New York, NY,

USA, 2017. Association for Computing Machinery. ISBN 9781450351058. doi:

10.1145/3106237.3106262. URL https://doi.org/10.1145/3106237.3106262.

[72] Rui Zhi, Thomas W. Price, Samiha Marwan, Alexandra Milliken, Tiffany Barnes,

and Min Chi. Exploring the impact of worked examples in a novice programming en-

vironment. In Proceedings of the 50th ACM Technical Symposium on Computer Sci-

ence Education, SIGCSE ’19, page 98–104, New York, NY, USA, 2019. Association

for Computing Machinery. ISBN 9781450358903. doi: 10.1145/3287324.3287385.

URL https://doi.org/10.1145/3287324.3287385.

https://doi.org/10.1145/3089799
https://doi.org/10.1007/BF00992696
http://arxiv.org/abs/1809.01357
https://aclanthology.org/2020.emnlp-main.82
https://arxiv.org/abs/1609.08144
https://doi.org/10.1145/3106237.3106262
https://doi.org/10.1145/3287324.3287385

Appendix A

Extra Background & Results

A.1 Recap of REINFORCE Algorithm [60]

Consider a standard reinforcement learning framework in which a learning agent inter-

acts with a Markov Decision Process(MDP) [59]. A policy in such a framework defines

the way in which agent should act given different environment states. Policies can be

either non-parametric or parametric. Consider a parameterized policy with a parameter

vector θ, with the probability of taking an action a in an environment state s defined

as π(a|s,θ). For parameterized policies, a popular way to learn the policy parameters is

based on the gradient of a cost function. That is, if L(θ) is the cost function, then the

parameters can be learnt using the update,

θt = θt−1 + α∇L(θt−1) (A.1)

where θt are the parameters of the policy at time step t, and α is the learning rate. To

obtain the gradient of the cost function, policy gradient theorem can be used [60],

∇L(θ) ∝
∑
s

µ(s)
∑
a

Qπ(s, a)∇π(a | s,θ) (A.2)

where Qπ(s, a) is the action-value estimate of being in a state s and following action a

from that state, and µ(s) is the state distribution under π.

This expression is intractable to compute for large state-action spaces, as it requires

summing over all possible states and actions. Instead, this update can be approximated

by sampling at each time step, such that the expectation of the sample gradient is

proportional to the actual gradient of the cost function as a function of the parameter

θ. This is called the REINFORCE trick [67], and can be expressed as,

∇L(θt−1) = αGt−1
∇π (At−1 | St−1,θt−1)

π (At−1 | St−1,θt−1)
. (A.3)

61

Appendix A. Extra Background & Results 62

where Gt−1 is the return, At−1 is the action and St−1 is the state at time (t− 1).

Using this sample as part of the stochastic gradient ascent update of equation A.1 yields,

θt = θt−1 + αGt−1
∇π (At−1 | St−1,θt−1)

π (At−1 | St−1,θt−1)
. (A.4)

A.2 Analysis of the Baselines

In this section, we investigate the difficulties faced by the baselines to generate good

quality codes. We do this by analyzing the codes generated by the baselines (Rand) and

(Rand)Cstr for the same specification of Sdepth = 3, Sstruct = {Run{WHILE{IF}}} and

Lin= 5, that we analyzed for our neural framework in Section 6.3. The codes generated

by the (Rand) baseline are shown in the Figure A.1 and the codes generated by the

(Rand)Cstr baseline are shown in the Figure A.2. We use δ of 0.5 for both the baselines.

(Rand) generates only 2 codes((a) and (b) in Figure A.1) out of the 10 syntactically cor-

rect codes it was asked to generate, that satisfy the threshold. This is in agreement with

our claim that only a small amount of syntactically correct codes are also semantically

correct. The randomly generated codes can suffer from basic quality issues, such as re-

dundant sequence of action blocks turnLeft-turnRight or putMarker -pickMarker((c) and

(d) in Figure A.1), using a while block with a no markersPresent condition just after a

putMarker action ((e) in Figure A.1) etc. Note that, even the 2 codes that satisfy the

threshold 0.5 are of not great quality, since they always result in simple agent actions,

and will not be able to satisfy a higher threshold value.

(Rand)Cstr is able to improve upon (Rand) and generates 5 codes((a) to (e) in Figure

A.2) out of the 10 codes it was asked to generate, that satisfy the threshold. This

suggests that the use of constraints can resolve some quality issues; however developing

handcrafted constraints that can cover all the possible code quality features becomes a

difficult challenge. Note that, it might be possible to add some more constraints then we

use, but it becomes increasingly difficult to introduce new constraints as the complexity

of the specifications keeps increasing. Further, another example can be observed here

which indicates limitations in the quality scoring function: code (c) in Figure A.2 cannot

lead to any agent movement within the grid, but is still given a high value by the scoring

function.

Appendix A. Extra Background & Results 63

Sin

def Run(){
While(cond){
If(cond){
}

}
}

Lin:=5

Code
specification

def Run(){
move
While(not rightIsClear){
move
If(not leftIsClear){
move

}
}

}

(a)

def Run(){
move
While(not leftIsClear){
turnRight
If(frontIsClear){
putMarker

}
}

}

(b)

def Run(){
While(not rightIsClear){
If(not rightIsClear){
turnLeft
turnRight
turnRight

}
}

}

(c)

def Run(){
turnLeft
While(rightIsClear){
If(no markersPresent){
putMarker
pickMarker

}
}

}

(d)

def Run(){
putMarker
While(no markersPresent){
putMarker
If(frontIsClear){
move

}
}

}

(e)

def Run(){
While(markersPresent){
putMarker
If(not frontIsClear){
putMarker
turnRight

}
}

}

(f)

def Run(){
pickMarker
While(not frontIsClear){
turnLeft
If(not rightIsClear){
move

}
}

}

(g)

def Run(){
While(no markersPresent){
If(not rightIsClear){
putMarker
move
turnLeft

}
}

}

(h)

def Run(){
move
pickMarker
While(no markersPresent){
If(not rightIsClear){
putMarker

}
}

}

(i)

def Run(){
While(not rightIsClear){
If(not rightIsClear){
pickMarker
turnLeft
turnLeft

}
}

}

(j)

Figure A.1: Illustration of 10 different codes (a) to (j) generated by the (Rand) baseline
for the code specification shown at the top. In this case, the model generated 2 good

quality codes (a) and (b), and 8 bad quality codes (c) to (j), for δ of 0.5.

Appendix A. Extra Background & Results 64

Sin

def Run(){
While(cond){
If(cond){
}

}
}

Lin:=5

Code
specification

def Run(){
While(leftIsClear){
If(not frontIsClear){
pickMarker
turnRight

}
move
}

}

(a)

def Run(){
turnRight
While(leftIsClear){
move
If(frontIsClear){
pickMarker

}
}

}

(b)

def Run(){
While(markersPresent){
If(rightIsClear){
pickMarker
turnRight

}
turnRight
}

}

(c)

def Run(){
putMarker
While(markersPresent){
move
If(not rightIsClear){
turnLeft

}
}

}

(d)

def Run(){
putMarker
While(not leftIsClear){
turnRight
If(rightIsClear){
putMarker

}
}

}

(e)

def Run(){
While(leftIsClear){
If(not leftIsClear){
putMarker

}
pickMarker
}
putMarker

}

(f)

def Run(){
turnRight
While(not rightIsClear){
If(markersPresent){
turnRight
turnRight

}
}

}

(g)

def Run(){
putMarker
While(markersPresent){
turnLeft
If(markersPresent){
turnRight

}
}

}

(h)

def Run(){
While(frontIsClear){
If(leftIsClear){
move
pickMarker

}
putMarker
}

}

(i)

def Run(){
pickMarker
While(leftIsClear){
putMarker
If(rightIsClear){
putMarker

}
}

}

(j)

Figure A.2: Illustration of 10 different codes (a) to (j) generated by the (Rand)Cstr
baseline for the code specification shown at the top. In this case, the model generated 5

good quality codes (a) to (e), and 5 bad quality codes (f) to (j), for δ of 0.5.

Appendix A. Extra Background & Results 65

A.3 More Qualitative Results

Here we perform qualitative analysis for another specification with Sdepth = 2, Sstruct =

{Run{WHILE}} and Lin= 4. The codes generated by our neural framework are shown

in the Figure A.3 from (a) to (j). We also show example suitable visual tasks (A), (B)

corresponding to two good quality codes (a), (b), and (I), (J) corresponding to two bad

quality codes (I), (J) in Figure A.4. We use δ of 0.5.

The model is able to satisfy the threshold for 8 out of the 10 codes(code (a) to code (h)),

it was asked to generate. This is close to the 0.78 overall score for all the specifications

of depth 2, as shown in Table 6.1. These 8 codes do not have any visible semantic

irregularities, and can lead to interesting tasks, examples of which can be seen in the

two tasks (A) and (B) produced using codes (a) and (b); these can be used as new

practice tasks for student learning. However, these codes seem to have limited diversity,

considering they use only 3 of the 5 available action blocks {move, turnLeft, putMarker}
as well as 4 of the 8 available condition blocks {frontIsClear, rightIsClear, leftIsClear,
no markersPresent}.

On the other hand, code (i) and code (j) are semantically incorrect: code (i) has a

suboptimal while block: three move action blocks can be replaced by a single move action

block, and the while loop in code (j) is either redundant or a never ending loop depending

on the environment. Moreover, code(i) can only lead to straight agent movements within

the grid, and code (j) allows only few number of agent actions before termination, and

hence these codes also cannot lead to any interesting task. This can be seen through

the corresponding visual tasks (I) and (J). Hence these codes are bad quality codes and

do not satisfy the quality threshold δ.

Appendix A. Extra Background & Results 66

Sin

def Run(){
While(cond){
}

}
Lin:=4

Code
specification

def Run(){
While(rightIsClear){
putMarker
turnLeft
move
}

}

(a)

def Run(){
While(no markersPresent){
putMarker
move
move
}

}

(b)

def Run(){
While(rightIsClear){
putMarker
putMarker
move
}

}

(c)

def Run(){
While(rightIsClear){
move
putMarker
turnLeft
}

}

(d)

def Run(){
While(leftIsClear){
putMarker
move
move
}

}

(e)

def Run(){
move
While(leftIsClear){
putMarker
move
}

}

(f)

def Run(){
move
While(frontIsClear){
putMarker
move
}

}

(g)

def Run(){
While(no markersPresent){
putMarker
putMarker
move
}

}

(h)

def Run(){
While(frontIsClear){
move
move
move
}

}

(i)

def Run(){
While(rightIsClear){
putMarker
turnLeft
turnLeft
}

}

(j)

Figure A.3: Illustration of 10 different codes (a) to (j) generated by our neural framework
for the code specification shown at the top. In this case, the model generated 8 good quality

codes (a) to (h), and 2 bad quality codes (i) and (j), for δ of 0.5.

Appendix A. Extra Background & Results 67

Sin

def Run(){
While(cond){
}

}
Lin:=4

Code
specification

def Run(){
While(rightIsClear){
putMarker
turnLeft
move
}

}

(a) (A)

def Run(){
While(no markersPresent){
putMarker
move
move
}

}

(b) (B)

def Run(){
While(frontIsClear){
move
move
move
}

}

(i) (I)

def Run(){
While(rightIsClear){
putMarker
turnLeft
turnLeft
}

}

(j) (J)

Figure A.4: Reusing two good and two bad quality codes from the previous Figure A.3
to illustrate the codes along with one of their suitable visual tasks. The good quality codes
(a) and (b) can lead to interesting practice tasks as shown in (A) and (B) respectively,
while the bad quality codes (i) and (j) do not lead to interesting tasks, as shown in (I) and

(J) respectively.

	Declaration of Authorship
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Outline of the Thesis

	2 Background
	2.1 Block-Based Visual Programming
	2.2 Program Synthesis
	2.3 RL Framework for Program Synthesis
	2.4 Adding Diversity to Program Synthesis

	3 Related Work
	3.1 AI for Programming Education
	3.2 Program Synthesis
	3.3 Diverse Output Generation

	4 Problem Setup
	4.1 Preliminaries
	4.2 Formalizing the Objective

	5 Neural Code Generation Network - (CodeGen)Net
	5.1 Behavior Cloning
	5.2 Multi-Target RL Framework
	5.3 Integration with Beam Search

	6 Experiments
	6.1 Task Generation and Code Quality Scoring
	6.2 Evaluation Setup
	6.3 Results

	7 Conclusions
	7.1 Discussion
	7.2 Limitations & Future Work
	7.3 Broader Impact

	List of Figures
	List of Tables
	Bibliography
	Extra Background & Results
	A.1 Recap of REINFORCE Algorithm SuttonNIPS
	A.2 Analysis of the Baselines
	A.3 More Qualitative Results

